Orbita . U Z

Ilm-fan fazosi uzra

  • Shrift o'lchamini kattalashtirish
  • Odatiy shrift o'lchami
  • Shrift o'lchamini kichiklashtirish
Bosh sahifa Maqolalar Qiziqarli matematika Gilbert maslalari. O‘tkir matematiklar uchun murakkab muammolar.

Gilbert maslalari. O‘tkir matematiklar uchun murakkab muammolar.

E-mail Chop etish
Maqola Reytingi: / 11
Juda yomon!A'lo! 
Maqola mundarijasi
Gilbert maslalari. O‘tkir matematiklar uchun murakkab muammolar.
Kantorning kontinuum-gipotezasining isboti.
Arifmetika aksiomalarining o‘zaro zid emasligi.
Fizikani aksiomalash mumkinmi?
Muayyan sonlarning transsendentligining isboti, xususan 2√2 uchun.
Diofant tenglamalarini yechish uchun algoritm mavjudligi haqidagi masala.
18-raqamli masala.
Masalani yechimi uchun mukofot.
Ro‘yxatdagi so‘nggi masala.
Gilbert masalalari borasida qiziq faktlar:
Hamma sahifa

Gilbert maslalari.
O‘tkir matematiklar uchun murakkab muammolar.

Olmon matematigi David Gilbert tomonidan 1900 yilda e’lon qilingan 23 ta murakkab matematik masaladan iborat ro‘yxat, XX asr matematiklarining bir necha avlodi uchun ilmiy faoliyatdagi eng oliy maqsad o‘laroq gavdalangandi.

1900 yilning 8-avgust sanasida Butunjahon matematiklarining II-xalqaro kongressida olmon matematik olimi David Gilbert (1862-1943) «Matematika muammolari» deb nomlanuvchi tarixiy ma’ruzasini o‘qib eshittirdi. Mazkur ma’ruzada 23 ta murakkab matematika masalalar ro‘yxat tariqasida beyon qilingan bo‘lib, ma’ruzachining ta’rifiga ko‘ra, matematika fanining keyingi taraqqiyoti ko‘p jihatdan ushbu masalalarning yechilishi bilan uzviy bog‘liq bo‘lishi taxmin qilingan. Gilbert haq bo‘lib chiqdi. U o‘sha kongressda bayon qilgan ro‘yxatdagi murakkab matematik masalalarning yechimiga keyingi bir necha avlod matematiklar uchun eng oliy ilmiy maqsadga aylandi. Hozirda Gilbert masalalarining aksariyati o‘z yechimini topgan, lekin ular ichida hanuz olimlarga tinchlik bermayotganlari ham bor.

Gilbertning o‘sha mashhur ma’ruzasidan uch yilcha avvalroq boshqa bir nufuzli olim Anri Puankare (1854-1912) Syurix kongressi uchun shunga o‘xshash ma’ruza tayyorlagandi. O‘z ma’ruzasida Puankare matematik analiz va matematik fizika orasidagi o‘zaro uzviylik masalalariga e’tibor qaratgan bo‘lib, ularning hal etilishi ya'ni, isbotlanishi matematika va fizikaning keyingi rivoji uchun ulkan qadam bo‘lishini ta’kidlagan.

Parij kongressi uchun Gilbertga shunga o‘xshash ma’ruza qilish taklifi bilan chiqishganida, olim bu fikrni Puankarega nisbatan behurmatlik bo‘lishini aytib rad etgan edi. Lekin, Gilbertning do‘sti va salohiyatda undan kam bo‘lmagan boshqa bir matematik olim German Minkovskiy, uni bu borada umuman boshqacha yo‘l tutish mumkinligiga ishontirdi. Uning maslahatiga ko‘ra, Gilbert o‘z ma’ruzasida o‘sha davrning eng murakkab masalalari sifatida qaralayotgan, hamda, yaqin kelajak matematiklari hal etishi (isbotlashi) lozim deb qaralgan muammolarni o‘rtaga tashlashi kerak edi. Shunday qilib, Minkovskiyning maslahati bilan, Gilbert mana yaqin 100 yildan ziyod vaqtdan buyon dunyo matematiklarini aqlini shoshirib kelayotgan 23 ta muhim va murakkab matematik masalalar ro‘yxatini e’lon qildi.

 

David Gilbert (chapda) va German Minkovskiy (o'ngda) - XX asrning eng buyuk matematiklari sirasiga kirishgan

Gilbert o‘z maruzasida matematikaning keyingi taraqqiyoti uchun eng muhim deb hisoblagan bo‘limlariga katta e’tibor qaratgan. Masalalarni saralashda eng birinchi mezon, qo‘yilgan muammoning murkkabligi professional matematiklarning diqqatini torta oladigan darajada yetarlicha qiyin bo‘lishi, shu bilan birga u albatta yechimga ega bo‘lishi lozim edi. Shuningdek ikkinchidan, Gilbert iddaosiga ko‘ra, mazkur masalalarning bayoni, ya'ni, sharti «birinchi duch kelgan odamga ham tushuntirsa bo‘ladigan darajada ravon bo‘lishi» kerak edi.

Gilbertning birinchi muddaosi o‘zi istaganidek amalga oshdi. Ikkinchisi esa faqat rasmiy bir mulohaza o‘laroq qolib ketdi. Zero nafaqat Gilbertning o‘sha mushkul matematik muammolarini, balki, o‘rtacha murakkablikdagi har qanday matematik masalani ham, birinchi duch kelganga tushuntirsa bo‘ladigan sodda va ravon bayon qila bilish uchun, o‘sha birinchi duch keluvchini Gyottingen yoki, Prinston kabi oliy matematika institutlari yo‘laklarida poylash kerak…

Ma’ruzaning o‘zida vaqt tig‘izligi sababli Gilbert faqat 10 ta masala bayoniga to‘xtalgan xolos. Lekin u yuqorida ham aytilganidek, aslida 23 ta muammodan iborat bo‘lgan. Ushbu muammolarni shartli ravishda to‘rtta kichik guruhlarga ajratish mumkin. Birinchi guruhga matematika asoslariga taaluqli bo‘lgan masalalar tegishl bo‘lib, 1-6 masalalarni o‘z ichiga oladi. ikkinchi guruh 7-12 raqamli masalalardan iborat bo‘lib, sonlar nazariyasiga taaluqli masalalardan iborat bo‘lgan. 13-17 raqamli masalalarni o‘z ichiga olgan uchinchi guruhda, Gilbertning ta’biri bilan aytganda «sof matematika»ga taaluqli bo‘lgan, ya'ni, algebra va funksiyalar nazariyasini qamrab oluvchi muammolar bayon etilgan. 19-23 raqamli masalalardan iborat to‘rtinchi guruhda esa mohiyatan matematik analizga tegishli muammolar o‘rtaga tashlangan. Ular bilan quyidagi jadvalda tanishishingiz mumkin.

Sharti

Hozirgi holati

1

Kantroning kontinuum-gipotezsi

Yechilgan

2

Arifmetika aksiomalarining o‘zaro zid emasligi

Yechilgan

3

Ixtiyoriy ko‘pyoqni shunday qismlarga bo‘lish kerakki, ushbu qismlardan aynan o‘sha ko‘pyoq hajmiga teng hajmdagi kub yasash mumkin bo‘lsin.

Yechilgan

4

Geodezik chiziqlari to‘g‘ri chiziq bo‘lgan metrikalarni aniqlash

Yechilgan

5

Uzluksiz guruhlar Li guruhlari ekanini aniqlash

Yechilgan

6

Fizika aksiomalarini matematik mohiyati

Yechilmagan

7

Muayyan sonlarning transsendentligi

Ko‘plab xususiy hollar uchun yechilgan. Umumiy hol uchun yechilmagan.

8

Riman va Goldbax gipotezalarini qamrab oluvchi tub sonlar bilan bog‘liq muammo

Yechilmagan

9

Tub sonlarning o‘zaro yaqinligi nazariyasini umumlashtirish

Yechilgan

10

Diofant tenglamalarining yechimi uchun algoritm topish

Yechilgan

11

Ixtiyoriy algebraik son koeffitsiyentiga ega bo‘lgan kvadratik shakllarni tadqiq qilish (Irving Kaplanskiy ta’rifi)

Yechilgan

12

Kronekerning abel maydonlari haqidagi teoremasini ixtiyoriy algebraik maydonlarga tadbiq etish

Yechilmagan

13

Yettinchi darajali umumiy tenglamani faqat ikkita o‘zgaruvchiga bog‘liq bo‘lgan funksiya yordamida yechish mumkinmi?

Yechilgan

14

Butun sonli funksiyalar sistemasining yakuniyligini isbotlash

Yechilgan

15

German Shubertning (1848-1911) hisobiy geometriyasi uchun qat’iy asoslash berish

Yechilgan

16

Egri va algebraik yuzalar topologiyasi masalasi

Yechilgan

17

Barcha shakllarni, ratsional funksiyalar kvadratlarining yig‘indisi ko‘rinishida ifodalash mumkinligini isboti.

Yechilgan

18

Fazoni teng geometrik shakllar bilan qanchalik turli xil usulda to‘ldirish mumkin?

Yechilgan

19

Lagranjning muntazam variatsion masalasining yechimi har doim ham analitik bo‘ladimi?

Yechilgan

20

Drixlening chegaraviy shartlar masalasining umumiy muammosi

Yechilgan

21

Monodromiya guruhi va ma’lum kritik nuqtalar bo‘yicha differensial fuks tenglamalarning mavjudligini isbotlash

Yechilgan

22

Avtomorf funksiyalar orqali, analitik bog‘liqliklarni uniformizatsiya qilish

Yechilgan

23

Variatsion hisoblash uslublarini rivojlantirish

Yechilgan

Adolat yuzasidan aytish joizki, ushbu masalalarning aksariyati mohiyatan faqat matematik masalagina bo‘lib qolmay, balki, butun boshli yangi bir nazariyani shakllantiruvchi gipotezalarning markaziy muammosi sanaladi. Ularning aksariyatining yechishga bo‘lgan urinishlar, keyinchalik katta ilmiy gipotezalarga aylanib ketgan va butun boshla matematika olaida yangi yo‘nalishlar ochilishiga sabab bo‘lgan. Bu jihatdan ham Gilbert matematiklar oldiga qo‘ygan maqsadga erishildi desak mubolag‘a bo‘lmaydi. Vaqt o‘tishi bilan, Gilbert ro‘yxatidagi 6-, 8- va 12-raqamli masalalardan tashqari qolgan barcha 20 ta masala o‘z yechimi yoki, isbotini topdi.

 

Gilbert masalalarining shartini bayon qilishda ba’zi xilma-xilliklar mavjud. Buning sababi esa, so‘nggi yillarda matematika fanining taraqqiyoti aql bovar qilmas darajada keskin ilg‘orlikka erishgani bilan izohlanadi. Bu haqida Gilbert orzu ham qilmagan bo‘lsa kerak. Jadvalda ham ko‘rganingizdek, uning masalalari ilmiy va texnik atamalar bilan liq to‘la bo‘lgan o‘ta murakkab matematika masalalardan iborat bo‘lgan. Jadvalda, allaqachon yechilgan va hamon o‘z yechimini kutayotgan masalalar alohida rang bilan ajratib ko‘rsatilgan. Keling ulardan ayrimlarining tafsilotlariga qisqacha to‘xtalib o‘tsak:

 



Yangilаndi: 16.06.2015 18:51  
Maqola yoqdimi? Do'stlaringizga ham tavsiya qiling:

Bildirilgan fikrlar   

 
0 #3 do'stlardan yordamSherka 2016-02-22 21:58
Iltimos aziz do'stlar! Menga matematik mantiqiy masalalar judayam kerak. Shu borada yordamingiz kerak
Iqtibos
 
 
+1 #2 yordamkomoliddin 2015-12-05 09:56
salom salomatmisiz
men izlayotga matematik aksiomalarni topa olmayapman shu muommoga yordam bersangiz
Iqtibos
 
 
0 #1 fanlar.uzfarhodbek 2015-06-22 01:16
kechirasiz, aytolmaysizmi ana o'sha 23 masalalarning birortasini yoxud jamlanmasini topish mumkinmi?!
Iqtibos
 

Mulohaza bildiring:


Mahfiy kod
Yangilash

Banner

Orbita.Uz infotekasi

Milliy bayramlarimiz

Yaqin kunlardagi rasmiy bayramlar, kasb bayramlari, muhim tarixiy va xalqaro sanalar.

26 - Iyun - Iyd al-Fitr - Ramazon hayiti Dam olish kuni) (oy chiqishiga qarab bir kunga o'zgarishi mumkin)


1 - Sentyabr - Mustaqillik kuni. (Dam olish kuni)


2 - Sentyabr - Iyd al-Adho - Qurbon Hayiti . (Dam olish kuni) (oy chiqishiga qarab bir kunga o'zgarishi mumkin)

O'zbekiston shaharlari ob-havo ma'lumotlari

Orbita.Uz do'stlari:

Ziyo istagan qalblar uchun:

O'zbek tilidagi eng katta elektron kutubxona!

​Ўзбекча va o'zbekcha o'zaro transkripsiya!
O'zbekcha va ўзбекча ўзаро транскрипция!

Bizning statistika


Orbital latifalar :) :)

СмешноУлыбаюсьПодмигиваю

Serjant askarlarga daraxt kestiryapti.

Bir askar norozi ohangda:

-Men oliy ma’lumotli matematikman, menga o’zimga mos ish bering...

-Yaxshi, unda sen ildiz chiqarish bilan shug’ullan!


Birliklar Konvertori

Birlik / Kattalik turini tanlang:
Qiymatni kiriting:

Natijaviy qiymat:

© Orbita.uz

Kontent statistikasi

Foydalanuvchilar soni : 374
Kiritilgan mаqolalar soni : 762
O'qilgan sahifalar soni : 2513192

Tafakkur durdonalari

Ilm-Fan Taraqqiyotni yetaklovchi kuchdir!